Deriving Box-Spline Subdivision Schemes

نویسندگان

  • Neil A. Dodgson
  • Ursula H. Augsdörfer
  • Thomas J. Cashman
  • Malcolm A. Sabin
چکیده

Abstract. We describe and demonstrate an arrow notation for deriving box-spline subdivision schemes. We compare it with the z-transform, matrix, and mask convolution methods of deriving the same. We show how the arrow method provides a useful graphical alternative to the three numerical methods. We demonstrate the properties that can be derived easily using the arrow method: mask, stencils, continuity in regular regions, safe extrusion directions. We derive all of the symmetric quadrilateral binary box-spline subdivision schemes with up to eight arrows and all of the symmetric triangular binary box-spline subdivision schemes with up to six arrows. We explain how the arrow notation can be extended to handle ternary schemes. We introduce two new binary dual quadrilateral box-spline schemes and one new √ 2 box-spline scheme. With appropriate extensions to handle extraordinary cases, these could each form the basis for a new subdivision scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A constructive algebraic strategy for interpolatory subdivision schemes induced by bivariate box splines

This paper describes an algebraic construction of bivariate interpolatory subdivision masks induced by three-directional box spline subdivision schemes. Specifically, given a three-directional box spline, we address the problem of defining a corresponding interpolatory subdivision scheme by constructing an appropriate correction mask to convolve with the three-directional box spline mask. The p...

متن کامل

Scalar multivariate subdivision schemes and box splines

We study convergent scalar d-variate subdivision schemes satisfying sum rules of order k ∈ N, with dilation matrix 2I . Using the results of Möller and Sauer in [18], stated for general expanding dilation matrices, we characterize the structure of the mask symbols of such schemes by showing that they must be linear combinations of shifted box spline generators of a quotient polynomial ideal J ....

متن کامل

Non-uniform interpolatory subdivision via splines

We present a framework for deriving non-uniform interpolatory subdivision algorithms closely related to non-uniform spline interpolants. Families of symmetric non-uniform interpolatory 2n-point schemes of smoothness C are presented for n = 2, 3, 4 and even higher order, as well as a variety of non-uniform 6-point schemes with C continuity.

متن کامل

Subdivision scheme tuning around extraordinary vertices

In this paper we extend the standard method to derive and optimize subdivision rules in the vicinity of extraordinary vertices (EV). Starting from a given set of rules for regular control meshes, we tune the extraordinary rules (ER) such that the necessary conditions for C continuity are satisfied along with as many necessary C conditions as possible. As usually done, our approach sets up the g...

متن کامل

C2 subdivision over triangulations with one extraordinary point

This paper presents a new subdivision scheme that operates over an infinite triangulation, which is regular except for a single extraordinary vertex. The scheme is based on the quartic three-directional Box-spline scheme, and is guaranteed to generate C2 limit functions whenever the valency n of the extraordinary vertex is in the range 4 ≤ n ≤ 20. The new scheme differs from the commonly used s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009